Breezing metabolic rate tracker Study Cases

www.breezing.com

Case #1: Gabriel P.'s case

185 lbs (84 kg)

#1 Why did Gabriel gain 97 lbs (44 kg)?

#2 How did Gabriel lose 88 lbs (40 kg)?

Why did Gabriel gain 97 lbs (44 kg) in years?

Mifflin - St Jeor equation: Man:

REE(M-StJ) = [10 * weight (kg)] + [6.25 * height (cm)] - [5 * age (y)] + 5

Why did Gabriel gain 97 lbs (44 kg) in years?

+5 years
176 lbs
80 kg
+ 97 lbs
+ 44 kg

Estimated Total Burn: 2100 kcal/day
First True Total Burn: 1900 kcal/day

Difference Estimated - True Burn: 200 kCal/day

How does this difference translate to weight?

[(200(kCal/day)*7*52weeks/year)]/[3500kCal/lbs]= + 20 lbs/year

The knowledge of measuring Energy Expenditure was a key point for Gabriel to explained why he gained weight

5 yrs. \rightarrow ~100 lbs Total ~ 45 kg

How did Gabriel lose 88 lbs (40 kg)?*

Energy Balance Equation

Initial approach

Energy Storage = Energy Intake - Total Energy Expenditure

- 500 kcal/day ~ 1400 kcal/day - 1900 kcal/day

Gabriel expected a deficit of 3500 kcal per week \rightarrow equivalent to a loss of 1 lb per week (52 lbs/year).

Gabriel actual weight loss was 44lbs/year, a total of 88 lbs in 2 years

Energy Balance Equation Components

Energy Storage = Energy Intake - Total Energy Expenditure - 500 kcal/day ~ 1400 kcal/day - 1900 kcal/day The knowledge of Resting **Energy Expenditure was a** key point for Gabriel Resting (89%) Activity 1700 kcal/day 200 kcal/day

Resting Energy Expenditure represents a large percentage (75-95%) of Total Energy Expenditure

History of Measuring Energy Expenditure

Resting Energy Expenditure or Resting Metabolic Rate

Energy management: Cardio-Pulmonary System

Resting Energy Expenditure: Indirect Calorimetry Principle

Weir Equation:

REE (kCal/day) = $[3.9 (VO_2) + 1.1 (VCO_2)] \times 1.44$

VO₂: consumed oxygen rate (mL/min)

VCO₂: produced carbon dioxide rate (mL/min)

Weir, J. B. D. (1949). "New Methods For Calculating Metabolic Rate With Special Reference To Protein Metabolism." Journal Of Physiology-London 109(1-2): 1-9.

Weir, J. B. D. (1990). "Nutrition Metabolism Classic - New Methods For Calculating Metabolic-Rate With Special Reference To Protein-Metabolism." Nutrition 6(3): 213-221.

Tracker for Resting Energy Expenditure (REE) or Resting Metabolic Rate

Global Journal of Obesity, Diabetes and Metabolic Syndrome

Xiaojun Xian, Ashley Quach, Devon Bridgeman, Francis Tsow*, Erica Forzani* and Nongjian Tao*

Cémer for Bookstoman & Rosenara, inc Bodengo Instituté Astuma Wata Urévendy, Tempé, Artuma 83287, USA

Dates: Received; 36 October, 2014, Accepted; 19 March, 2015; Published; 21 March, 2015

*Corresponding authors: Francis Tsow, Center for Bluelectronics & Bluelersons, the Bludesign Institute. Artzona State University, Tempe, Artzona 85287, USA, E-mill Ising Islam@esu.edu

Erica Forzanii, Center for Bioelectronics & Biosensors, the Lindeugn Institute, Arizona State University, Tempe, Arizona 85287, USA, E-mail wrice forzanii@asu.edu

Research Article

Personalized Indirect Calorimeterfor Energy Expenditure (EE) Measurement

Abstract.

Background and aims: A personal indirect calorimeter allows everyone to assess resting and non-resting energy expenditure, thus enabling accurate determination of a person's total calone need for weight management and filmess. The aim of this study is to compare the performance of a new personal metabolic rate tracker based on indirect calorimetry, Breezing⁶, with the Douglas bag method, the gold standard method for energy expenditure (E.E.) measurement.

Methods: Energy expenditures (EE) at rest and during activities, and respiratory quotient (RQ) were measured for 12 healthy subjects, including 7 males and 5 females under different living conditions. A total of 314 measurements were performed with Breezing*, and the results were compared with those by the Douglas bag method.

Results: R-squared correlation coefficients (R*) between the data obtained with Breezing* and the Douglas bag method were 0.9976; 0.9986, 0.9981, and 0.9980, for VO, VCO, EE, and RQ respectively.

Conclusions: The EE and RQ values determined by Breezing* are in good agreement with those by the Douglas bag method.

GJODMS, March, 2015

Breezing

✓ The Tracker for Energy Expenditure (EE) demonstrated ~100% accuracy

GJODMS, March, 2015

How many cases like Gabriel are out there?

Study Case #2 – Pilot study with overweight/obese population

Dr. Craig Stump, MD

Table 1: Physical characteristics of recruited study participants. Means +/- (SD)

Physical Parameters	Age	Weight (kg)	Height (m)	BMI (kg/m²)	W/H	Fat%	Sys BP	Dias BP
CG (n=20) F:14, M:6	54 (7)	102 (20)	1.68 (0.08)	36 (6)	0.88 (0.10)	44 (8)	127 (14)	81 (7)
IG (n=20) F:17, M:3	57 (13)	92 (14)	1.64 (0.10)	34 (6)	0.85 (0.06)	44 (6)	132 (20)	85 (14)
Normal range	N/A	N/A	N/A	18.5-24.9	N/A	N/A	N/A	N/A

BM1; body mass index., Waise to hip ratio: W/H ratio, Body fat percentage: Far⁶s, Blood pressure: BP, Sys BP; systolic BP, Dias BP; diastolic BP.

Table 2. Metabolic and blood parameters of recruited study participants: Means +/- (SD)

Parameter	REE (kCal/d)	Gluc. (mg/dL)	Glye. Hb (%)	Trigly.	Chol. (mg/dL)	LDL (mg/dL)	HDL (mg/dL)	LDL/HDL	DHRI
CG (n=20) F:14, M:6	1420 (300)	109 (33)	6.6 (1.1)	148 (65)	208 (33)	130 (37)	52 (11)	2.8 (1.3)	6/11= 54%
IG (n=20) F:17, M:3	1570 (280)	111 (27)	6.7 (1.5)	120 (42)	200 (36)	130 (37)	31 (9)	2.7 (1.0)	7/12= 58%
Normal range	N/A	70-105	<6.0	0-169	0-200	0.99	>38	1.3-4.7	

REE: resting energy expenditure, Giuc. glucose. Glyc Hh: glycosylated Hemoglobin, Trigly: trygliceride, Chol: cholesterol., DHRI: Diabetes High Risk Index, percentage a new cases this overed with Glyc Hh levels higher than 6.0%.

Difference of Calculated REE* – True (measured) REE

* Predictive Equation

metabolic rates like Gabriel

What about pregnancy?

To learn more watch: https://www.youtube.com/watch?v=tHS-pegE_gQ

Study case #3: Resting Energy Expenditure during pregnancy*

Comparison of REE with Weight

Mifflin - St Jeor equation:

Woman:

REE(M-StJ) = [10 * weight (kg)] + [6.25 * height (cm)] - [5 * age (y)] - 161

Calorie Calculator

REE does not follow the simple math of more mass more metabolic rate from an Equation

Comparison of REE with Body Composition

Fat Mass (kg) 60 Lean) Lean Body Mass (kg) 53 kg 50 44 ka Body (Total/Fat/I <u>4</u>36.5 kg **FFM** 39 kg Wass 20 20 18 kg **FM** 11 kg 35 20 25 30 40 Pregnancy weeks

--- Weight (kg)

Mifflin - St Jeor equation:

Woman:

$$REE(M-StJ) = [A * FFM (kg)] + [B * FM (kg)] + C$$

REE does not follow the simple math of more mass the more Free Fat Mass (FFM) or more Fat Mass (FM), the more metabolic rate from an equation.

"The use of predicative equations for estimating REE are only ESTIMATIONS"

"We are much more complex as individuals and the complexity is addressed only with a breath-based REE measurement"

Can we bring other cases to show the energy equation really works?

Study Case #4 – Weight management in sports*

Emily's goal:

• Needed to lose 10 lbs to reach 160 lbs by the competition day on April 16th (2 months)

^{*} Rich Wenner, athletes' coach & Amber Yudell, nutritionist, Arizona State University

Study Case #4 – Weight management in sports

Study Case #4 – Weight management in sports

Emily J achieved her weight goal of 160 lbs in 2 months, and her life's weightlifting record (70 kg, 5Kg over previous personal record)!

She can rescue someone with her own weight now!

http://instagify.com/media/ 980460235926117550 1581604454

Study Case #5 – Weight management in Hypothyroidism

Case with Cytomel (Thyroid T3) - 25mcg/day

✓ The user thought that he should be losing weight!

Study Case #5 – Weight management in Hypothyroidism*

Resting Metabolic Rate (kcal/day) from Feb. 2nd to March 26th 2015 – Total: 52 days

- ✓ High variability was observed due to the use of fast release of T3 hormone
- ✓ Despite this variability (caused by T3 hormone), an average REE value could still be defined

^{*} Breezing's user experience team. Advise from Dr. John Henried, MD, Sacramento, CA

Applying REE measure to Energy Balance

0 kcal/day ~ 2050 kcal/day - 1830 kcal/day (+/- 200 kCal/day)

Expected weight maintenance

Weight Profile

✓ Weight profile showed less than 2% change → Energy balance corroboration

✓ The REE average values adjusted the energy balance equation, despite the potential hormonal variability.

Action: the user was switched to a slow release thyroid hormone to control the T3 levels in blood to avoid spikes due to fast release

How the use of equations to estimate REE is affecting users of activity trackers or calorie counters?

Reference to read:

Check: Linkedin/David Jackemeyer

Calorie-calculator models (Mifflin by MyfitnessPal e.g.) should not be used for Weight Management

https://www.linkedin.com/pulse/calorie-calculator-models-mifflin-myfitnesspal-eg-used-jackemeyer?trk=prof-post

Good news

• You can breathe and measure REE with **Breezing**

 Once you know your actual REE, you will be able to recalibrate your activity trackers, and adjust your calorie intake apps to better achieve your goals

Study case #6: Long-Term Resting Energy Expenditure monitoring on Ketogenic Diets

Diet A: Ketogenic diet- higher fat:

Intake: 1800 cal/day, Fat: 1250 cal (140g), Protein: 360 cal (90g), Carb: 180 cal (45g).

Diet B: Ketogenic diet-lesser fat:

Intake: 1200 – 1400 cal/day

Fat: 75 g, Protein: 80g,

Carb: 5 days 50 g, 2 days 100g.

Diet A increased metabolic rate above 2,000 kcal/day level, and Respiratory Quotient (RQ) reflected diet composition.

Diet B did not change metabolic rate, it increased RQ → 1, indicating only carbohydrate oxidation source.

Refs. for RQ values:

0.60 to 0.80: mostly fat oxidation

0.80 to 0.90: mixed source, fat and carb oxidation 0.90 to 1.00: mostly carbohydrate oxidation or

anaerobic metabolism increased.

Study case #7: Momentary Energy Expenditure after exercising*

Can we detect a difference in metabolism between a High Intensity Interval Training (HIIT) day vs a No-HIIT day?

³³

Effect of HIIT on individual's energy expenditure throughout training sessions

Averaged change of pre- and post- energy expenditure ($\Delta iEE = EE_{post} - EE_{pre}$) was significantly different:

- ✓ HIIT day vs. NO HIIT day (HIIT group)
- ✓ HIIT day (HIIT group) vs. CONTROL (Control group)

Conclusions

- The breath measurement of Resting Energy Expenditure (REE) is important to manage weight in a variety of different health-related situations, including hormonal problems, obesity, type 2 diabetes, pregnancy as well as in fitness training.
- The importance on breath analysis for REE is similar to a blood pressure measurement for management of blood pressure.
- Calorie intake based on Resting Energy Expenditure measurement can be accurately prescribed to manage weight successfully, in a similar manner a medicine is prescribed to manage blood pressure.
- Attempts to use an equation, instead of a measurement for Resting Energy Expenditure, is merely a guess that can irresponsibly produce undesired effects.

